

Original Article**Renewable Energy Transitions: Solar, Wind, and Hydrogen****Hemlata**

Assistant Professor, Department of Sociology, Dayanand Girl's P.G. College, Kanpur

Manuscript ID:
IBMIIRJ-2025-021039**Submitted:** 12 Sept. 2025**Revised:** 17 Sept. 2025**Accepted:** 17 Oct. 2025**Published:** 31 Oct. 2025**ISSN:** 3065-7857

Volume-2

Issue-10

Pp. 170-173

October 2025

Correspondence Address:

Hemlata
Assistant Professor, Department of
Sociology, Dayanand Girl's P.G.
College, Kanpur
Email: hemlatamilan78@gmail.com

Quick Response Code:

Web: <https://ibrj.us>DOI: [10.5281/zenodo.17621521](https://doi.org/10.5281/zenodo.17621521)DOI Link:
<https://doi.org/10.5281/zenodo.17621521>

Creative Commons

Abstract

The global energy landscape is undergoing a major transformation as nations shift from fossil fuel dependency toward renewable and sustainable energy systems. Among the most promising alternatives, solar, wind, and hydrogen energy have emerged as the central pillars of this transition. These energy sources not only enhance energy security but also contribute significantly to climate mitigation and economic development. This study provides a comparative evaluation of solar, wind, and hydrogen energy systems, exploring their opportunities, challenges, and interconnections that contribute to a sustainable future. It integrates perspectives on technological progress, environmental effects, policy dynamics, and societal acceptance. Drawing on international reports, policy documents, and energy databases, the analysis suggests that the hybridization of solar, wind, and hydrogen energy could establish a resilient low-carbon energy framework. However, the overall success of this transition depends on advancements in infrastructure, storage technologies, and strong policy support.

Keywords: Renewable Energy, Solar Power, Wind Energy, Hydrogen Energy, Energy Transition, Sustainability, Decarbonization

Introduction

The 21st century has marked a defining moment in the global shift toward renewable energy as societies face the dual challenges of climate change and the depletion of fossil fuels. Energy underpins every aspect of modern civilization, influencing economic growth, environmental health, and social welfare. Renewable energy transitions are more than technological shifts — they represent deep socio-economic transformations that reshape how energy is generated, distributed, and consumed. Among the leading contributors to this transformation are solar, wind, and hydrogen energy, each offering unique advantages. Solar energy captures the sun's limitless potential; wind energy converts natural air movement into power; and hydrogen serves as a clean, flexible fuel with high energy density. Together, they form a complementary energy ecosystem capable of sustainably powering the future.

This paper provides a detailed analysis of the renewable energy transition with a particular focus on solar, wind, and hydrogen energy. It assesses their potential, challenges, and opportunities for integration into a sustainable global energy framework.

Objectives

The primary objectives of this study are to:

1. Examine global and national trends in renewable energy adoption.
2. Evaluate the technological and economic feasibility of solar, wind, and hydrogen energy systems.
3. Assess the environmental and social implications of renewable energy transitions.
4. Identify policy measures and institutional frameworks that promote renewable integration.
5. Highlight challenges and propose strategic approaches for achieving sustainable energy transitions.

Literature Review

Scholars and energy organizations have widely acknowledged the increasing importance of renewables in the global energy mix. According to the International Energy Agency (IEA), renewable sources are projected to generate nearly half of the world's electricity by 2040. Within this mix, solar and wind dominate, while hydrogen is gaining traction as a clean energy carrier — particularly for industrial and transportation sectors. Jacobson et al.

Creative Commons (CC BY-NC-SA 4.0)

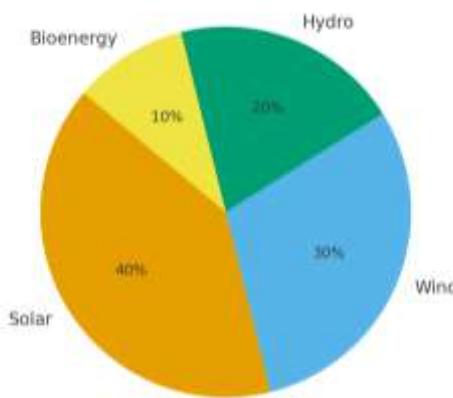
This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License](#), which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article:

Hemlata. (2025). Renewable Energy Transitions: Solar, Wind, and Hydrogen. *InSight Bulletin: A Multidisciplinary Interlink International Research Journal*, 2(10), 170–173.
<https://doi.org/10.5281/zenodo.17621521>

(2019) argue that achieving a 100% renewable energy system is technologically viable, provided the right investments and policies are in place. Similarly, REN21 (2023) and the World Energy Council emphasize that equitable social participation and economic inclusion are essential for a just transition. Earlier studies also suggest that successful energy transitions require holistic approaches integrating technology, governance, and societal engagement. Building upon these insights, this paper offers a comparative perspective on solar, wind, and hydrogen energy in terms of capacity, cost efficiency, and socio-environmental impact.

Data and Methodology


This study adopts a qualitative and analytical framework based on secondary data. Information has been sourced from international energy databases, policy reports, peer-reviewed journals, and official statistics from organizations such as IRENA, IEA, and the World Bank.

- **Study Period:** 2010–2025
- **Scope:** Global trends with specific focus on India's renewable energy landscape
- **Methodology:** Comparative analysis and synthesis of literature, reports, and policy data

Key analytical areas include:

- Installed capacities and growth trajectories of solar, wind, and hydrogen energy
- Cost patterns and levelized cost of energy (LCOE) analysis
- Policy interventions and investment trends
- Environmental and social impact assessments

India's Renewable Energy Mix (2025 Projection)

Solar Energy: The Brightest Source

Solar energy, generated through photovoltaic (PV) and concentrated solar power (CSP) systems, has emerged as the most rapidly expanding renewable source. It is abundant, scalable, and increasingly cost-effective due to advancements in technology.

Global Context:

According to IRENA (2024), global solar capacity has surpassed 1,200 GW, making it the fastest-growing renewable energy source. China, India, the U.S., and the EU are leading contributors.

Indian Context:

India has positioned itself as a global leader in solar energy. Under the National Solar Mission, the country aims to install 280 GW of solar capacity by 2030. Key initiatives such as rooftop solar programs, solar parks, and the KUSUM scheme for farmers have played a pivotal role.

Advantages:

- Clean, inexhaustible energy source
- Low operational costs
- Ideal for decentralized rural electrification

Challenges:

- Intermittency (no generation at night or during cloudy weather)
- Significant land requirements for large-scale projects

Need for efficient energy storage solutions

Wind Energy: Harnessing the Power of Air

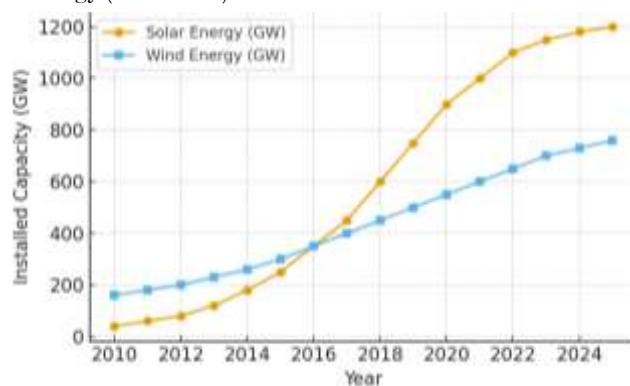
Wind energy converts the kinetic motion of air into electricity through turbines, making it one of the most mature and cost-competitive renewable technologies.

Global Context:

Wind power accounts for nearly 25% of total renewable electricity generation worldwide, with offshore wind projects expanding rapidly in Europe and China.

Indian Context:

India ranks among the top nations in wind power deployment, with over 45 GW of installed capacity. Tamil Nadu, Gujarat, and Maharashtra lead in production. The National Offshore Wind Policy aims to achieve 30 GW of capacity by 2030.


Advantages:

- Clean, renewable, and cost-effective
- Complements solar energy (wind often peaks when solar generation declines)
- Creates employment in rural and coastal areas

Challenges:

- Visual and noise impacts
- Potential disruption of bird migration routes
- Land acquisition and community resistance

Global Growth of Solar and Wind Energy (2010–2025)

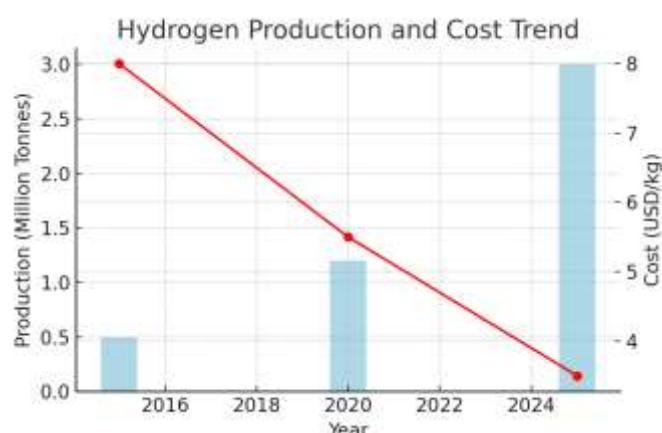
Hydrogen Energy: The Fuel of the Future

Hydrogen has emerged as a vital component in the next phase of clean energy, offering a pathway to decarbonize heavy industries, power generation, and transport. When produced through electrolysis using renewable electricity, green hydrogen becomes entirely carbon-free.

Global Context:

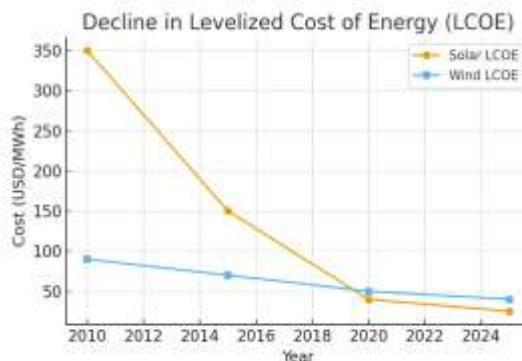
Countries such as Japan, Germany, and Australia are leading in hydrogen investment. IRENA projects that by 2050, hydrogen could meet up to 12% of global energy demand.

Indian Context:


India's *National Green Hydrogen Mission* (2023) aims to produce 5 million metric tonnes of green hydrogen annually by 2030. Collaborative efforts between the public and private sectors are focusing on electrolyzer production and refueling infrastructure.

Advantages:

- High energy density
- Zero emissions at the point of use
- Enables long-term energy storage and transport


Challenges:

- High production and infrastructure costs
- Energy loss during conversion
- Limited technological maturity at scale

Comparative Analysis of Solar, Wind, and Hydrogen

Criteria	Solar Energy	Wind Energy	Hydrogen Energy
Maturity Level	High	High	Emerging
Intermittency	Daytime only	Seasonal/Windy hours	Storable
Storage Need	Yes (batteries)	Moderate	Essential for conversion
Carbon Emissions	Very Low	Very Low	Zero (Green Hydrogen)
Investment Cost Trend	Decreasing	Stable	High (but reducing)
Applicability	Electricity	Electricity	Transport, Industry

Decline in Levelized Cost of Energy (LCOE)**Results and Discussion**

The analysis reveals that solar and wind power are now mature, reliable, and economically competitive technologies. Together, they provide a complementary energy mix — solar during the day and wind during evenings or monsoon periods — ensuring grid stability when supported by smart grids and storage systems.

Hydrogen, on the other hand, serves as a transformative storage and industrial fuel, bridging the gap between renewable generation and end-use sectors. It enables “sector coupling” by integrating power, heating, and transport systems.

Despite these advancements, the transition still faces challenges such as high capital costs, limited infrastructure, and regulatory barriers. Effective policy mechanisms — including carbon pricing, subsidies, and R&D incentives — are essential to accelerate adoption. Social engagement and public awareness also play crucial roles in ensuring equitable participation in the renewable transition.

Conclusion

The renewable energy transition represents a defining pathway toward sustainability and climate resilience. Solar, wind, and hydrogen collectively offer the technological foundation for a cleaner future. While solar and wind provide immediate scalability in electricity generation, hydrogen introduces flexibility and deep decarbonization potential across multiple sectors.

India's proactive policy initiatives, combined with industrial collaboration, position it as a global frontrunner in renewable transformation. The success of this transition depends on continuous innovation, inclusive policymaking, and community participation. Only through a balanced blend of technology, economics, and social responsibility can the world achieve a truly sustainable and equitable energy future.

Acknowledgment

The author expresses sincere gratitude to the Principal and colleagues of Dayanand Girl's P.G. College, Kanpur, for their constant encouragement and academic support throughout this study. Special thanks are extended to the Department of Sociology for providing valuable insights and access to relevant resources. The author also acknowledges the contributions of various national and international organizations—such as the International Renewable Energy Agency (IRENA), International Energy Agency (IEA), and Ministry of New and Renewable Energy (MNRE), Government of India—for their comprehensive reports and data, which significantly enriched this research.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. International Energy Agency (IEA). *World Energy Outlook 2024*.
2. International Renewable Energy Agency (IRENA). *Renewable Capacity Statistics 2024*.
3. REN21. *Renewables Global Status Report 2023*.
4. Government of India, *National Solar Mission Documents (MNRE, 2023)*.
5. Ministry of Power, *National Green Hydrogen Mission Framework (2024)*.
6. Jacobson, M. Z. et al. “A Roadmap to 100% Clean, Renewable Energy,” *Energy & Environmental Science*, 2019.
7. World Energy Council, *Hydrogen Global Report*, 2023.