

Original Article**Green Catalysis for Sustainable Development: A Comprehensive Review****Sabahat Anjum Qureshi**

Govt College Chourai Diet Chhindwara (M.P)

Manuscript ID:
IBMIIRJ -2025-021007**Submitted:** 05 Sept. 2025**Revised:** 10 Sept. 2025**Accepted:** 05 Oct. 2025**Published:** 31 Oct. 2025

ISSN: 3065-7857

Volume-2

Issue-10

Pp. 31-34

October 2025

Correspondence Address:
Sabahat Anjum Qureshi
Govt College Chourai Diet
Chhindwara (M.P)
Email: sabag9254@gmail.com

Quick Response Code:

Web. <https://ibrj.us>DOI: [10.5281/zenodo.17620747](https://doi.org/10.5281/zenodo.17620747)DOI Link:
<https://doi.org/10.5281/zenodo.17620747>

Creative Commons

Abstract

The increasing global demand for sustainable chemical processes has stimulated the exploration of green catalysis. Green catalysis is the fundamental approach to achieve environment friendly, economically viable, and socially responsible development. Green catalysis encompasses catalytic processes that minimize hazardous by-products. It also aims to reduce energy consumption, and utilize renewable feedstocks. This review highlights the principles of green chemistry, the role of catalysts in achieving sustainability, and the advances in homogeneous, heterogeneous, and biocatalysis. Examples of green catalytic systems such as photocatalysis for pollutant degradation, enzymatic reactions for pharmaceuticals, and solid acid/base catalysts for biomass conversion are presented here. The challenges and future perspectives are also critically discussed in this review.

Keywords: Green Catalysis, Sustainable Development, Green Chemistry, Homogeneous Catalysis, Heterogeneous Catalysis, Biocatalysis, Photocatalysis, CO₂ Reduction; Biomass Conversion, Renewable Energy, Atom Economy, Environmental Sustainability

Introduction

In recent years global industrialization has led to remarkable economic growth but at the expense of environmental sustainability. Chemical processes often require a large amount of energy. They generate toxic by-products and thus contributing to climate change, pollution, and depletion of natural resources. In this context Brundtland Commission defined sustainable development as meeting present needs without compromising future generations' ability to meet theirs has become a guiding principle for modern science and technology. Catalysis plays important role in achieving sustainability, as more than 90% of chemical processes involve catalysts. Catalysts can drastically improve efficiency of chemical processes by enabling reactions at lower temperatures, enhancing their selectivity, and reducing waste production. Green catalysis is a subdiscipline of green chemistry. It integrates catalytic strategies with sustainability goals. The main focus of using green catalysis lies on designing such systems that maximize atom economy, utilize renewable resources, and reduce reliance on toxic solvents or heavy metals.

Principles of Green Chemistry and Catalysis

The 12 principles of Green chemistry, articulated by Anastas and Warner, guide the design of eco-friendly chemical processes. Catalysis plays an important role in achieving many of these principles, thereby contributing to sustainable development. Below is a detailed discussion of how catalytic processes embody and advance these principles: Catalysis directly supports several of these principles as:

1. **Prevention of waste** – Catalysts improve selectivity of chemical reactions, directing the process toward the desired product while minimizing side reactions and by-product formation. For instance, catalytic hydrogenation or oxidation reactions are more selective than stoichiometric reagents, thereby lowering waste streams and reducing the environmental footprint of industrial processes.
2. **Atom economy** – Catalytic reactions incorporate most atoms of the reactants into the desired product thus enhances atom economy. High atom economy not only minimizes waste formation but also reduces the cost of raw materials, making the process both environmentally and economically sustainable.
3. **Less hazardous synthesis** – The use of non-toxic catalysts like enzymatic catalysts and transition metal free catalysts reduce environmental risks.

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International](#) Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article:

Qureshi, S. A. (2025). Green Catalysis for Sustainable Development: A Comprehensive Review. InSight Bulletin: A Multidisciplinary Interlink International Research Journal, 2(10), 31–34. <https://doi.org/10.5281/zenodo.17620747>

4. **Energy efficiency** – Catalysts lower activation energies of chemical reactions. They often enable reactions under mild conditions like lower temperatures and pressures compared to non-catalyzed routes significantly reducing energy demand.
5. **Use of renewable feedstocks** – Catalysis enables the transformation of renewable biomass, lignocellulosic materials, and even carbon dioxide into value-added chemicals and fuels.
6. **Catalysis over stoichiometric reagents** – A catalyst enables reactions repeatedly, reducing material consumption. This reduces the quantity of reagents required, minimizes waste, and enhances overall process efficiency.

Thus, catalysis is central to advancing green chemistry and sustainable development.

Homogeneous and ligand-designed Catalysis

Homogeneous catalysts show exceptional selectivity for fine chemicals and pharmaceuticals; green progress focuses on recyclable solvent systems, immobilization, and non-toxic ligands. Recycling strategies (ionic liquids, biphasic systems) reduce E-factors in high-value manufacture. Recent reviews discuss ligand design for base-metal catalysis to replace noble metals.

Example: Wilkinson's catalyst ($\text{RhCl}(\text{PPh}_3)_3$) for hydrogenation operates under mild conditions, reducing energy usage.

Designing water-soluble homogeneous catalysts enables reactions in environmentally benign media. However, drawbacks include catalyst recovery and potential toxicity. Recent advances focus on immobilizing homogeneous catalysts on recyclable supports.

Heterogeneous Catalysis (including supported metals, metal oxides, zeolites, carbon materials)

Heterogeneous catalysts remain dominant in large-scale chemical manufacture because of robustness and ease of separation. Recent trends emphasize earth-abundant active sites, hierarchical supports, and process intensification (structured reactors).

Biomass upgrading (levulinic acid, furans → fuels/chemicals): zeolite and carbon-supported catalysts show promising conversions in aqueous or biphasic media; reviews summarize conversion yields and catalyst lifetimes needed for scale-up.

Performance numbers: many heterogeneous systems report TOFs ranging from $0.1\text{--}10^3 \text{ h}^{-1}$ depending on reaction type; catalyst stability (hundreds to thousands of hours) is a critical scaling metric.

Biocatalysis (enzymes and engineered microbes)

Enzymatic catalysis operates under mild conditions with high selectivity and minimal waste. Enzymatic catalysts are biodegradable, renewable, and operate in aqueous media. Industrial examples include enzymatic esterifications, transaminations and cascade reactions in pharma and flavors. Advances in directed evolution and immobilization have improved operational stability and TONs into industrially relevant ranges ($10^4\text{--}10^6$ for some enzymes). Biocatalysis is especially promising for fine chemicals and biomass valorization.

Single-atom and atomically dispersed catalysts

Single-atom catalysts (SACs) maximize metal atom efficiency and often show unique selectivity and activity. Sustainability assessments indicate SACs can reduce precious metal usage and lifecycle impacts if synthesis and supports are optimized — but scale-up and anchoring strategies remain active research areas.

Metal-organic frameworks (MOFs) and hybrid materials

MOFs provide tunable pore environments and active centers; their use in catalysis and tandem reactions is growing. Challenges: stability under industrial feeds and cost for large volumes. Recent studies report MOF-derived catalysts with competitive activity for oxidation and CO_2 capture/use.

Electrocatalytic CO_2 reduction (CO₂RR)

Electrochemical CO_2 reduction converts CO_2 to CO, formate, hydrocarbons or alcohols using electricity. Key practical performance targets:

Faradaic efficiencies (FE): High-value products (e.g., C_2 products) often show FE 30–60% at lab scale; CO production can reach >90% FE on tailored catalysts.

Current densities: Industrially meaningful current densities are $>200\text{--}300 \text{ mA cm}^{-2}$; many lab systems report $10\text{--}200 \text{ mA cm}^{-2}$ depending on cell design. Practical reviews summarize catalysts, electrolytes and cell architectures.

System-level note: Coupling CO₂RR with renewable electricity could convert point-source CO_2 into chemicals, but technoeconomic limits depend on electricity cost, product selectivity, and downstream separation.

Photocatalytic and photoelectrochemical hydrogen production

Photocatalysts aim to split water using sunlight:

Representative practical data: Recent membrane-type composites achieved $\sim 0.68\%$ STH and H_2 production rates $\sim 213 \text{ mmol m}^{-2} \text{ h}^{-1}$ under simulated sunlight in reported lab devices — progress but far from commercial STH targets ($\sim \geq 10\%$ for direct solar devices).

Electrocatalytic ammonia synthesis & alternative Haber–Bosch approaches- Ammonia production is highly energy intensive. Two complementary green pathways are being developed. Electrochemical or plasma routes to ammonia from $\text{N}_2 + \text{H}_2\text{O}$ at ambient conditions (still low rates/selectivities at lab scale).

Improved Haber–Bosch (HB) reactors/catalysts: Process intensification and novel catalysts (e.g., electride-supported catalysts) enable lower-temperature/pressure operation and integration with intermittent renewable H_2 . Reviews and industry summaries report advances and pilot deployments. Practical impact assessments show potential for substantial emissions reduction if green H_2 and improved catalysts are used.

System-level impacts: energy and emissions

The chemical sector is responsible for a significant share ($\sim 5\%$ globally) of CO_2 emissions and is a large industrial energy consumer; catalytic process improvements are a pivotal lever for sector decarbonization. IEA and technology roadmaps indicate catalytic routes and electrification (including electrocatalysis) are among the high-impact interventions to reduce chemical industry emissions through 2050. Quantitative scenario modelling by IEA and others shows that catalytic energy savings combined with low-carbon electricity can cut process CO_2 substantially (model details in IEA roadmaps).

Challenges to commercialization and scale-up

Stability & lifetime: Many high-performing lab catalysts degrade under industrial feeds and long run times.

Material supply & cost: Noble metals and complex ligands can limit scale and increase lifecycle impacts unless replaced or minimized (SACs, base-metal catalysts).

System integration: Coupling electrolyzers/photo-reactors to renewable generation requires buffering, flexible operation, and new catalyst behavior under intermittent loads.

Metrics & benchmarking: Inconsistent reporting (lack of standardized FE, current density, lifetime metrics) hinders direct comparison; guidelines have been published to harmonize reporting for electrochemical studies.

Case studies (concise practical snapshots)

- Green ammonia (Haber–Bosch improvements & alternatives)** - The Haber–Bosch process is the large-scale synthesis of ammonia from nitrogen and hydrogen. The traditional synthesis consumes high energy. It requires temperatures of 400–500 °C and pressures of 150–300 bar. BASF's improved catalysts enable lower-pressure ammonia production, cutting emissions and energy demand.
- Solvay Process Alternatives**- Catalytic processes using CO₂ and calcium sources provide greener alternatives to the Solvay process for soda ash production, reducing salt waste.
- CO₂ electroreduction to CO/format**- **Representative lab performance:** CO production on Ag catalysts: FE >90% at current densities ~100–200 mA cm⁻² in gas-diffusion electrode setups; cell energy efficiency and product separation determine technoeconomic viability. Review papers and device studies provide aggregated performance ranges.
- Photocatalytic H₂ via composite membranes**- **Reported data:** Composite CdS SiO₂–Pt in PVDF membrane achieved 0.68% STH with H₂ evolution rate ~213 mmol m⁻² h⁻¹ in lab testing (simulated sunlight), illustrating device-level progress but also the gap to commercial efficiency targets.
- Biomass valorization with zeolite/carbon catalysts**- **Practical outcomes:** Catalytic conversions of platform molecules (HMF, levulinic acid) have reached high selectivities in bench reactors; scale-up remains constrained by feedstock variability and catalyst fouling.

Roadmap & research priorities

- Standardized reporting:** adopt unified metrics for electro/photocatalysis (FE, current density, stability hours, and energy per mole product).
- Materials innovation:** focus on earth-abundant metals, SACs, and robust carbon supports to lower lifecycle impacts.
- Device engineering & integration:** scale gas-diffusion electrodes, membrane reactors, and modular HB units compatible with variable renewable electricity.
- Life-cycle assessment (LCA):** combine LCA with catalyst synthesis routes to ensure net environmental benefit.

Acknowledgment

The author expresses sincere gratitude to the Department of Chemistry, Government College Chourai, District Chhindwara (M.P.), for providing valuable academic support, research encouragement, and an enabling environment throughout the preparation of this review paper.

Heartfelt thanks are extended to colleagues, mentors, and researchers whose scientific contributions and publications have significantly enriched the understanding of green catalysis and sustainable chemistry. Their work provided the foundation for the insights and discussions presented in this paper.

Special appreciation is also due to the scientific community, journals, and institutions dedicated to promoting sustainable chemical processes and advancing the principles of green chemistry for a cleaner and safer planet.

Finally, the author acknowledges the continuous motivation and moral support of family members and friends, whose encouragement made the successful completion of this work possible.

Financial Support and Sponsorship

Nil

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Conclusion

Green catalysis is a cornerstone of sustainable development, enabling eco-friendly transformations across industries from energy to pharmaceuticals. By enhancing atom economy, reducing energy consumption, and utilizing renewable feedstocks, green catalysts address both environmental and economic challenges. While issues of scalability, cost, and catalyst stability remain, emerging innovations in photocatalysis, biocatalysis, and CO₂ utilization hold immense promise. The pursuit of greener catalytic pathways will play a defining role in achieving a sustainable, low-carbon future.

References

- Anastas, P. T.; Warner, J. C. *Green Chemistry: Theory and Practice*, Oxford University Press, 1998.
- Sheldon, R. A. "Green and sustainable manufacture of chemicals from biomass: state of the art." *Green Chem.* 2014, 16, 950–963.
- Corma, A.; Garcia, H. "Catalytic importance of green chemistry." *Chem. Soc. Rev.* 2008, 37, 2096–2126.
- Clark, J. H.; Macquarrie, D. J. *Handbook of Green Chemistry and Technology*. Wiley-Blackwell, 2002.
- Sheldon, R. A.; Woodley, J. M. "Role of biocatalysis in sustainable chemistry." *Chem. Rev.* 2018, 118, 801–838.

- 6. Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. "Green chemistry: science and politics of change." *Science* 2002, **297**, 807–810.
- 7. Zhang, Z.; Huber, G. W. "Catalytic transformation of biomass-derived feedstocks into olefins and aromatics." *Chem. Soc. Rev.* 2018, **47**, 1351–1390.
- 8. Astruc, D. "Transition-metal nanoparticles in catalysis: from historical background to the state-of-the art." *Nanomaterials* 2018, **8**, 179.
- 9. Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Bäckvall, J. E. "Artificial enzymes for sustainable catalysis: biomimetic oxidations with metal–ligand complexes." *Chem. Rev.* 2014, **114**, 11863–12001.
- 10. Armaroli, N.; Balzani, V. "The future of energy supply: challenges and opportunities." *Angew. Chem. Int. Ed.* 2007, **46**, 52–66.
- 11. Jessop, P. G. "Searching for green solvents." *Green Chem.* 2011, **13**, 1391–1398.
- 12. Sheldon, R. A. "Fundamentals of green chemistry: efficiency in reaction design." *Chem. Soc. Rev.* 2012, **41**, 1437–1451.
- 13. Li, C. J. "Organic reactions in aqueous media with a focus on carbon–carbon bond formations: a decade update." *Chem. Rev.* 2005, **105**, 3095–3166.
- 14. Crabtree, R. H. "Aspects of catalysis in green chemistry." *Chem. Rev.* 2017, **117**, 9228–9246.
- 15. Beller, M.; Centi, G.; Sun, H.; Han, B. "Catalysis for sustainable energy production." *Chem. Soc. Rev.* 2021, **50**, 107–113.