

In Sight Bulletin: A Multidisciplinary Interlink International Research Journal

Peer Reviewed International, Open Access Journal.

ISSN: 3065-7857 / Website: https://ibrj.us / Volume-2, Issue-6 / June - 2025

Original Article

Climate Technology as a Tool to Reduce Air and Sound Pollution: A Sustainable Perspective

Jagannath Gulab Nanavare

Department of Physics, Raja Shripatrao Bahgwantrao Mahavidyalya, Aundh Tal- Khatav Dist-Satara

Manuscript ID:

IBMIIRJ -2025-020623

Submitted: 15 May 2025

Revised: 25 May 2025

Accepted: 20 June 2025

Published: 30 June 2025

ISSN: 3065-7857

Volume-2

Issue-6

Pp 97-100

June 2025

Correspondence Address:

Asst. Prof Jagannath Gulab Nanavare Department of Physics, Raja Shripatrao Bahgwantrao Mahavidyalya, Aundh Tal- Khatav Dist-Satara

Email: nanavarej@gmail.com

Quick Response Code:

Web. https://ibrj.us

DOI: 10.5281/zenodo.17068158

DOI Link:

https://doi.org/10.5281/zenodo.17068158

Abstract

Climate technologies are central to global efforts addressing environmental degradation, particularly in reducing air and sound pollution. This paper explores the intersection of climate technology and pollution mitigation, examining key innovations, implementation strategies, and case studies from around the world. The research highlights electric vehicles, renewable energy, green infrastructure, and smart urban planning as crucial tools for sustainable development. The paper concludes with an analysis of barriers and recommendations for scaling adoption in developing and urbanizing regions.

Climate technologies play a pivotal role in addressing air and sound pollution, two pressing urban environmental issues linked to public health and climate change. This paper explores how innovations such as electric mobility, renewable energy systems, industrial air filtration, and AI-based air quality monitoring contribute to pollution reduction. Simultaneously, green infrastructure, low-noise electric transport, and smart urban planning are highlighted for their potential to mitigate noise pollution. Drawing on case studies, including the Delhi EV policy and pollution trends across Indian cities, the research evaluates the sustainability, implementation barriers, and strategic pathways for broader adoption. It concludes that integrating climate technologies into urban development plans can significantly improve environmental and public health outcomes in a sustainable manner. Through a comprehensive analysis of case studies, global reports, and emerging practices, the paper highlights the transformative potential of climate technologies in reshaping urban ecosystems. The findings underscore the need for integrated policy support, public awareness, and strategic investment to scale these technologies for a cleaner and quieter future.

Keywords: Climate technology, air pollution, noise pollution, electric mobility, smart cities, sustainable development

Introduction

In India air and sound pollution are major environmental challenges in urban areas, It is closely linked to climate change. Carbon monoxide is a colourless, odourless, and tasteless gas produced by the incomplete combustion of carbon-based fuels. Common sources include vehicle exhaust, industrial processes, generators, indoor heating and cooking appliances. Which causes headache, dizziness, nausea, weakness, shortness of breath etc. According to the World Health Organization (WHO), air pollution contributes to over seven million premature deaths in the world annually, while chronic exposure to noise pollution affects cardiovascular and mental health. Climate technology, designed to reduce greenhouse gas (GHG) emissions and promote environmental resilience, also plays a pivotal role in minimizing these pollutants. Sound pollution, also called noise pollution, refers to unwanted or harmful sound that disrupts normal activities and affects human health. The major Harmful Effects caused by Sound Pollution such as hearing problems, cardiovascular issues, increased blood pressure, irregular heartbeat (arrhythmia), higher risk of heart attacks and strokes, psychological and mental health effects, stress and anxiety, irritability and anger, sleep disturbances and insomnia, mental fatigue and reduced concentration, depression in chronic exposure cases, sleep disorders, effects on children, difficulty in learning and reading, impaired memory and attention, delayed speech development, increased aggression or anxiety, effects on pregnant women as a premature birth, low birth weight etc. This study investigates how climate technologies can be leveraged to

Creative Commons (CC BY-NC-SA 4.0)

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations ae licensed under the idential terms.

How to cite this article:

Nanavare, J. G. (2025). Climate Technology as a Tool to Reduce Air and Sound Pollution: A Sustainable Perspective. Insight Bulletin: A Multidisciplinary Interlink International Research Journal, 2(6), 97–100. https://doi.org/10.5281/zenodo.17068158

ISSN: 3065-7857 / Website: https://ibrj.us / Volume-2, Issue-6 / June - 2025

combat air and sound pollution, with a focus on urban environments where the concentration of such pollutants is highest.

Research Objectives:

To identify and categorize climate technologies with dual benefits for air and sound pollution reduction. To analyze the mechanisms through which these technologies achieve their multi-pollutant reduction goals. To evaluate the sustainability aspects (economic, social, environmental) of deploying these technologies.

Need of Climate Technologies for Air Pollution

1. Renewable Energy Technologies

Transitioning from fossil fuels to renewable sources such as solar, wind, and hydroelectric power substantially reduces air pollution by lowering emissions of CO_2 , SO_2 , and nitrogen oxides (NO_x) . Deployment of rooftop solar systems and decentralized wind turbines offers clean energy alternatives for both rural and urban areas.

2. Electric Mobility

Electric mobility, often referred to as e-mobility, is the use of electric-powered vehicles for transportation, instead of conventional vehicles that run on petrol or diesel. It includes all modes of transportation powered by electricity, Electric vehicles (EVs), including buses, cars, and two-wheelers, emit zero tailpipe pollutants, unlike internal combustion engine (ICE) vehicles. Studies show that large-scale EV adoption can significantly reduce air pollution in urban atmospheres.

3. Industrial Air Cleaning Systems

Industrial air cleaning systems are technologies used to remove harmful pollutants and particulate matter from the air emitted by factories, power plants, and other industrial processes. These systems help in reducing air pollution and complying with environmental regulations. Technologies such as electrostatic precipitators, wet scrubbers, and activated carbon filters are increasingly used in factories and power plants to trap particulate matter and toxic gases before they are released into the atmosphere.

4. Air Quality Monitoring and AI-Based Control

Air Quality Monitoring involves measuring pollutants in the atmosphere to understand pollution levels and their impact on health and the environment. With the rise of urban air pollution, there's a growing need for real-time, intelligent air monitoring systems. This is where Artificial Intelligence (AI) comes in — helping us move from simple data collection to smart pollution prediction, analysis, and control. Real-time monitoring using IoT-based sensors and AI algorithms enables better regulation of emissions and predictive air quality management.

Climate Technologies for Sound Pollution Reduction

• Low-Noise Electric Transport

One of the often-overlooked benefits of climate technology is its role in reducing sound (noise) pollution, especially in urban areas. A key innovation in this area is low-noise electric transport, which includes electric vehicles (EVs), buses, trains, and two-wheelers. Traditional vehicles powered by internal combustion engines (ICEs) produce significant noise EVs generate considerably less noise than traditional vehicles due to the absence of combustion engines. Urban public transport systems powered by electricity or hydrogen fuel cells contribute to quieter cityscapes.

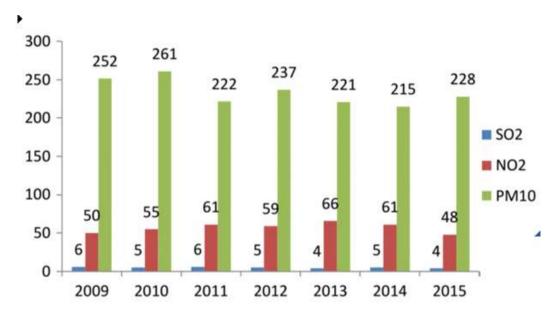
• Acoustic Urban Design and Green Infrastructure

Vertical gardens, green belts, and urban forests act as natural sound absorbers, reducing ambient noise levels. Materials like rubberized asphalt and noise-reducing barriers are used in road construction to minimize vehicle noise.

• Smart City Planning

As urban populations grow, noise pollution from traffic, construction, industry, and public gatherings is becoming a major concern. Smart city planning uses modern technology, data, and urban design strategies to reduce noise levels, improve quality of life, and create healthier urban environments. Smart city planning doesn't just build infrastructure it designs cities that are quiet, sustainable, and people-friendly. Noise-mapping tools and geographic information systems (GIS) help urban planners identify high-risk noise zones and develop mitigation strategies. These include the strategic placement of sound buffers and zoning regulations.

Case Studies


	The second control of the second
f Byrnihat, India	11. Peshawar, Pakistan
2. Dehi, India	12. Stelkot, Pakistan
3. Karaganda, Kazakhstan	13. Gurugram, India.
4. Mulanpur, India	14. Ganganagar, India
5. Lahore, Pakistan	15, Hotan, China
6. Faridabed, India	16. Greater Norda, India
7. N'Ojamena, Chad	17. Bhwedi, India
8. Loni, India	18. Muzaffamagar, India
9. New Dehi, India	19. Hanumangarh, India
10. Multan, Pakistan	20. Nords, India

Most polluted cities in world 2024

ISSN: 3065-7857 / Website: https://ibrj.us / Volume-2, Issue-6 / June - 2025

Rank	City	State	PM2.5 (μg/m³)
1	Byrnihat	Meghalaya	128.2
2	Delhi	Delhi (UT)	108.3
3	Mullanpur	Punjab	102.3
4	Faridabad	Haryana	101.2
5	Loni	Uttar Pradesh	91.7
6	New Delhi	Delhi (UT)	91.6
7	Gurugram	Haryana	87.4
8	Ganganagar	Rajasthan	86.6
9	Greater Noida	Uttar Pradesh	83.5
10	Bhiwadi	Rajasthan	83.1

Most polluted cities in india 2024-25

Delhi, India

The Delhi EV Policy (2020) aimed to electrify 25% of new vehicle registrations by 2024. Preliminary results indicate improved air quality in pilot zones, with reduced vehicular emissions and noise complaints.

Here is a graph showing annual PM_2 . 5 trends in Delhi from 2015 to 2023, sourced from CPCB data via environmental studies. While precise values for 2024–2025 are also available from CSE reports, noise pollution trends are not sufficiently documented in time-series format.

Challenges and Limitations

Despite their promise, climate technologies face several barriers:

- High Initial Costs: Renewable energy systems and EVs remain expensive for low-income populations.
- Policy Gaps: Inconsistent regulations across regions hinder uniform implementation.
- Public Awareness: Limited understanding of pollution's health effects reduces public support.
- Infrastructure Deficiency: Lack of EV charging stations, smart grid networks, and green urban spaces inhibits scalability.

Recommendations

To overcome these challenges, the following strategies are recommended:

- Government Incentives: Subsidies and tax benefits for clean technology adoption.
- Capacity Building: Public education campaigns and professional training.
- Research & Innovation: Investment in low-cost, locally adaptable solutions.
- Integrated Urban Planning: Inclusion of climate technology in master city plans.

Conclusion

Climate technologies offer robust solutions to the intertwined crises of air and sound pollution. Their deployment not only addresses environmental degradation but also enhances urban livability and health. With appropriate policy support, infrastructure development, and stakeholder engagement, these technologies can drive the transition toward cleaner, quieter, and more sustainable cities.

Acknowledgment

InSight Bulletin: A Multidisciplinary Interlink International Research Journal (IBMIIRJ)

ISSN: 3065-7857 / Website: https://ibrj.us / Volume-2, Issue-6 / June - 2025

The author expresses heartfelt gratitude to the management and staff of Raja Shripatrao Bahgwantrao Mahavidyalaya, Aundh, for their constant support and encouragement in pursuing research initiatives. Special thanks are extended to the Department of Physics for providing the necessary resources and academic environment to carry out this study. The author also acknowledges the data and insights provided by the International Energy Agency, WHO, CPCB, and other national and international organizations, which greatly enriched the depth of this research.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- 1. International Energy Agency. (2023). Global EV Outlook 2023.
- 2. World Health Organization. (2022). Air Pollution and Health.
- 3. Ministry of Environment, Forest and Climate Change, Government of India. (2022). National Clean Air Programme (NCAP).
- 4. United Nations Environment Programme. (2021). Sound Management in Urban Areas.
- Zhang, L., & Wang, Y. (2020). "Smart Monitoring Systems for Urban Pollution Control." Journal of Environmental Technology, 34(3), 202-218.
- 6. https://mpcb.gov.in/node
- 8. https://www.linkedin.com/posts/gaurav-saini-55042458_india-byrnihat-meghalaya-activity-7305089744932114432-sLO7
- 9. Gaurav Saini. (2024). India's Most Polluted Cities 2024. Retrieved from LinkedIn Post
- 10. Maharashtra Pollution Control Board. (n.d.). Air Quality Monitoring.